Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Neuroscience Bulletin ; (6): 1289-1302, 2021.
Article in English | WPRIM | ID: wpr-922623

ABSTRACT

Growth differentiation factor 15 (GDF-15) is a member of the transforming growth factor-β superfamily. It is widely distributed in the central and peripheral nervous systems. Whether and how GDF-15 modulates nociceptive signaling remains unclear. Behaviorally, we found that peripheral GDF-15 significantly elevated nociceptive response thresholds to mechanical and thermal stimuli in naïve and arthritic rats. Electrophysiologically, we demonstrated that GDF-15 decreased the excitability of small-diameter dorsal root ganglia (DRG) neurons. Furthermore, GDF-15 concentration-dependently suppressed tetrodotoxin-resistant sodium channel Nav1.8 currents, and shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction. GDF-15 also reduced window currents and slowed down the recovery rate of Nav1.8 channels, suggesting that GDF-15 accelerated inactivation and slowed recovery of the channel. Immunohistochemistry results showed that activin receptor-like kinase-2 (ALK2) was widely expressed in DRG medium- and small-diameter neurons, and some of them were Nav1.8-positive. Blockade of ALK2 prevented the GDF-15-induced inhibition of Nav1.8 currents and nociceptive behaviors. Inhibition of PKA and ERK, but not PKC, blocked the inhibitory effect of GDF-15 on Nav1.8 currents. These results suggest a functional link between GDF-15 and Nav1.8 in DRG neurons via ALK2 receptors and PKA associated with MEK/ERK, which mediate the peripheral analgesia of GDF-15.


Subject(s)
Animals , Rats , Analgesia , Ganglia, Spinal , Growth Differentiation Factor 15 , Sensory Receptor Cells , Sodium Channels , Tetrodotoxin/pharmacology
2.
Braz. j. med. biol. res ; 47(12): 1068-1074, 12/2014. graf
Article in English | LILACS | ID: lil-727656

ABSTRACT

Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca2+ dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.


Subject(s)
Animals , Male , Jejunum/drug effects , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Myosins/metabolism , Taurine/pharmacology , Adrenergic alpha-Antagonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Atropine/pharmacology , Calcium Channel Blockers/pharmacology , Cimetidine/pharmacology , Diphenhydramine/pharmacology , Enteric Nervous System/drug effects , Histamine H1 Antagonists/pharmacology , /pharmacology , Jejunum/physiology , Muscarinic Antagonists/pharmacology , Myosin-Light-Chain Kinase/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide/metabolism , Phosphorylation , Phentolamine/pharmacology , Propranolol/pharmacology , Rats, Sprague-Dawley , Taurine/antagonists & inhibitors , Tetrodotoxin/pharmacology , Verapamil/pharmacology
3.
Journal of Korean Medical Science ; : 777-783, 2012.
Article in English | WPRIM | ID: wpr-210929

ABSTRACT

Effective drug to manage constipation has been unsatisfactory. We sought to determine whether methionine has effect on the human colon. Human colon tissues were obtained from the specimens of colon resection. Microelectrode recording was performed and contractile activity of muscle strips and the propagation of the contractions in the colon segment were measured. At 10 microM, methionine depolarized the resting membrane potential (RMP) of circular muscle (CM) cells. In the CM strip, methionine increased the amplitude and area under the curve (AUC) of contractions. In the whole segment of colon, methionine increased the amplitude and AUC of the high amplitude contractions in the CM. These effects on contraction were maximal at 10 microM and were not observed in longitudinal muscles in both the strip and the colon segment. Methionine reversed the effects of pretreatment with sodium nitroprusside, tetrodotoxin and Nw-oxide-L-arginine, resulting in depolarization of the RMP, and increased amplitude and AUC of contractions in the muscle strip. Methionine treatment affected the wave pattern of the colon segment by evoking small sized amplitude contractions superimposed on preexisting wave patterns. Our results indicate that a compound mimicking methionine may provide prokinetic functions in the human colon.


Subject(s)
Humans , Area Under Curve , Arginine/pharmacology , Colon/drug effects , Membrane Potentials/drug effects , Methionine/pharmacology , Microelectrodes , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Nitroprusside/pharmacology , Tetrodotoxin/pharmacology
4.
J. venom. anim. toxins incl. trop. dis ; 16(3): 421-431, 2010. ilus, graf, tab
Article in English | LILACS, VETINDEX | ID: lil-557170

ABSTRACT

Specimens of the pufferfish Arothron hispidus collected at Parangipettai, on the southeast coast of India, were subjected to bacterial isolation and identification. Three species were identified, namely Bacillus sp., Kytococcus sedentarius and Cellulomonas fimi. Partially-purified microbial filtrates exhibited hemolytic activity on chicken and human erythrocytes of O, B and AB blood groups, with maximum activity of 32 HU. The microbial filtrates also presented ATPase, Mg2+-ATPase, Na+K+-ATPase and AchE enzymatic activities of positive neuromodulation in Kytococcus sedentarius with 1300, 300.1, 1549.98 and 140.55%, in Cellulomonas fimi with 620, 300, 10 and 128.42%, and in Bacillus species with 40, 200, 849.98 and 158.69%, respectively. Toxicity symptoms were observed when the bacterial filtrate was intraperitoneally injected into mice. The bacterial filtrate caused adverse effects on viability of the mouse muscle cell line (L929) and leukemia cell line (P388). Maximum level of inhibition was observed on the growth of L929 cell line. Bacillus lentimorbus inhibited the cell line from 84.03 to 94.43% whereas Bacillus species inhibited the growth in a range between 77.25 and 86.16% at the lowest dilution.Specimens of the pufferfish Arothron hispidus collected at Parangipettai, on the southeast coast of India, were subjected to bacterial isolation and identification. Three species were identified, namely Bacillus sp., Kytococcus sedentarius and Cellulomonas fimi. Partially-purified microbial filtrates exhibited hemolytic activity on chicken and human erythrocytes of O, B and AB blood groups, with maximum activity of 32 HU. The microbial filtrates also presented ATPase, Mg2+-ATPase, Na+K+-ATPase and AchE enzymatic activities of positive neuromodulation in Kytococcus sedentarius with 1300, 300.1, 1549.98 and 140.55 percent, in Cellulomonas fimi with 620, 300, 10 and 128.42 percent, and in Bacillus species with 40, 200, 849.98 and 158.69 percent, respectively. Toxicity symptoms were observed when the bacterial filtrate was intraperitoneally injected into mice. The bacterial filtrate caused adverse effects on viability of the mouse muscle cell line (L929) and leukemia cell line (P388). Maximum level of inhibition was observed on the growth of L929 cell line. Bacillus lentimorbus inhibited the cell line from 84.03 to 94.43 percent whereas Bacillus species inhibited the growth in a range between 77.25 and 86.16 percent at the lowest dilution.(AU)


Subject(s)
Tetrodotoxin/pharmacology , Bacteria , Cell Line , Muscle Cells , Tetraodontiformes
5.
Journal of Arak University of Medical Sciences-Rahavard Danesh. 2008; 10 (4): 74-80
in Persian | IMEMR | ID: emr-100545

ABSTRACT

In resent years, neuronal type Na+ channel is one of the important currents for action potential depolarization phase in heart cells. In this study neuronal type Na+ channel is blocked by low concentration of TTX to compare the effect of TTX blocker on pacemaker activity of sinoatrial node [SAN] and atrioventricular node [AVN] of mouse heart. In this experimental study the pacemaker activity of distinct intact SAN and AVN, was recorded before and during consuming 100 nM TTX and cycle length [CL] was measured. Data was analyzed using T test. 100 nM TTX increased CL on SAN preparations by 22.2 +/- 6% and on AVN preparations by 52.5 +/- 13.5%. These changes were significant in the two nodes. It is passible to conclude that; the neuronal type Na+ channel was present in the two nodes, and the effect of TTX on CL of the two nodes was different


Subject(s)
Animals, Laboratory , Neurons/drug effects , Tetrodotoxin/pharmacology , Mice , Sinoatrial Node , Atrioventricular Node
6.
Yonsei Medical Journal ; : 384-389, 2001.
Article in English | WPRIM | ID: wpr-36130

ABSTRACT

This study examined the acute effects of ethanol (EtOH) on the firing patterns of Purkinje cells (PCs) using an intracellular recording in slice preparation of rat cerebellum. The experiments were performed in sagittal cerebellar slices (400 microm) of adult Sprague-Dawley rats (80-100g). Ethanol was applied by a bath superfusion with a known concentration expressed as the percentage of solution by volume (v/v) at 0.1, 0.5, 1, 2, and 4%. The result of the Chi-square test illustrated that the firing patterns were altered significantly after EtOH (p=0.007). However, the firing patterns that were altered by EtOH application were not affected by EtOH concentration (p= 0.1296). Among the 54 PCs tested, 30 PCs did not display any spontaneous firing activity and 24 PCs displayed spontaneous spike activity, either spiking in the simple manner (n=14) or cyclicly oscillating (n=10). In the presence of EtOH, 31 PCs were quiet, 22 PCs exhibited simple spiking activity and 1 PC continued to oscillate. Most PCs that displayed spontaneous activity before EtOH application progressively slowed their spike activity after EtOH superfusion. Especially, it was evident that 9 out of 10 oscillating PCs stopped their regular cyclic activity. In addition, 9 out of 14 PCs that displayed simple spike activity ceased to fire after EtOH application. Eleven out of 30 quiet PCs began to fire irregularly after EtOH application and this phenomenon usually occurred with membrane depolarization. EtOH induced spontaneous activity in 36.7% (11/30) of the quiescent PCs. In conclusion, there was differential EtOH sensitivity in the vitro slice preparation. EtOH depressed the endogenously generated spontaneous activity, especially the oscillatory firing activity. In contrast, the silent PCs were excited after EtOH application. Since this differential sensitivity persists in the presence of tetrodotoxin (TTX), it is suggested that this differential sensitivity is peculiar to the PCs.


Subject(s)
Rats , Animals , Ethanol/toxicity , In Vitro Techniques , Purkinje Cells/drug effects , Rats, Sprague-Dawley , Tetrodotoxin/pharmacology
7.
Journal of Korean Medical Science ; : S24-S26, 2000.
Article in English | WPRIM | ID: wpr-117534

ABSTRACT

Since GABA and its related enzymes had been determined in beta-cells of pancreas islets, effects of GABA on pancreatic exocrine secretion were investigated in the isolated perfused rat pancreas. GABA, given intra-arterially at concentrations of 3, 10, 30 and 100 microM, did not exert any influence on spontaneous or secretin (12 pM)-induced pancreatic exocrine secretion. However, GABA further elevated cholecystokinin (10 pM)-, gastrin-releasing peptide (100 pM)- or electrical field stimulation-induced pancreatic secretions of fluid and amylase, dose-dependently. The GABA-enhanced CCK-induced pancreatic secretions were completely blocked by bicuculline (10 microM), a GABAA receptor antagonist but not affected by saclofen (10 microM), a GABA(B) receptor antagonist. The enhancing effects of GABA (30 microM) on CCK-induced pancreatic secretions were not changed by tetrodotoxin (1 microM) but partially reduced by cyclo-(7-aminoheptanonyl-Phe-D-Trp-Lys-Thr[BZL]) (10 microM), a somatostatin antagonist. In conclusion, GABA enhances pancreatic exocrine secretion induced by secretagogues, which stimulate enzyme secretion predominantly, via GABA(A) receptors in the rat pancreas. The enhancing effect of GABA is partially mediated by inhibition of islet somatostatin release. GABA does not modify the activity of intrapancreatic neurons.


Subject(s)
Rats , Amylases/metabolism , Animals , Baclofen/pharmacology , Baclofen/analogs & derivatives , Bicuculline/pharmacology , Cholecystokinin/metabolism , Dose-Response Relationship, Drug , Electric Stimulation , gamma-Aminobutyric Acid/pharmacology , GABA Antagonists/pharmacology , Gastrin-Releasing Peptide/metabolism , Hormones/pharmacology , In Vitro Techniques , Pancreas/metabolism , Pancreas/enzymology , Pancreas/drug effects , Receptors, GABA-A/metabolism , Secretin/metabolism , Somatostatin/pharmacology , Tetrodotoxin/pharmacology
8.
Indian J Exp Biol ; 1999 May; 37(5): 455-60
Article in English | IMSEAR | ID: sea-62326

ABSTRACT

The effect of Indian red scorpion (Mesobuthus tamulus concanesis, Pocock; MBT) venom was investigated on isolated rat right atrial preparations. MBT venom (0.001-3.0 micrograms/ml) exhibited a peculiar concentration-response pattern with respect to rate. The venom concentrations between 0.001-0.01 microgram/ml increased the atrial rate (phase I), followed by a relative decrease with 0.03-0.3 microgram/ml (phase II), and then an abrupt increase with 0.6-3.0 micrograms/ml (phase III). On the other hand, the force was unaltered by venom at phases I and II, while an increase was seen at phase III (3.0 micrograms/ml). Propranolol (0.1 microM) completely blocked the cardiostimulant action of venom at phase III. Further, this stimulant action of venom was absent in atria obtained from reserpinized animals. Pretreatment with atropine (0.3 microM), produced tachycardia at concentrations 0.1-0.3 microgram/ml of venom. But, hexamethonium (30 microM) had no influence on the venom (0.1 microgram/ml)-induced alterations in rate. However, MBT venom increased the acetylcholinesterase (AChE) activity (2-3 fold) in a concentration-dependent manner. Tetrodotoxin (2 microM), did not block the increase in rate produced by 0.01 microgram/ml of venom. Results suggest that, MBT venom-induced alterations of cardiac rhythmicity are mediated through cholinergic as well as adrenergic mechanisms depending upon the concentrations. The modulation of atrial rate at very low concentrations may be due to the direct action of venom on the atrium.


Subject(s)
Acetylcholinesterase/metabolism , Animals , Atropine/pharmacology , Dose-Response Relationship, Drug , Heart/drug effects , Heart Atria/drug effects , Hexamethonium/pharmacology , Male , Muscarinic Antagonists/pharmacology , Myocardial Contraction/drug effects , Rats , Reserpine/pharmacology , Scorpion Venoms/administration & dosage , Tetrodotoxin/pharmacology
9.
Biol. Res ; 32(1): 29-33, 1999. tab, graf
Article in English | LILACS | ID: lil-241340

ABSTRACT

The underlying mechanisms of acetycholine-induced intestinal relaxation in the lizard Liolaemus tenuis tenuis are still unknows. By using a classical model of intestinal recording of isometric contraction and relaxation in conjunction with specific pharmacological tools, this article studies the possible influence of EDRF/NO and nicotinic ganglionar receptors on the Ach-induced relaxation in an effort to elucidate the probable mechanisms involved in ACh effect. It was observed that the relaxation of the lizard intestine elicited by ACh (10(-7) - 4 x 10(-4) M) was not affected by hexametonium (5 x 10(4) M) or tetrodotoxin (10(-6) M). Nicotine (10(-7) to 10(-4) M) induced relaxation was significantly antagonized by hexametonium; however, it was not influenced by tetrodotoxin. These results allow us to discard a neuronal pathway in cholinergic-induced relaxation, suggesting a more direct cholinergic effect on the smooth muscle, perhaps mediated by an unknown substance released by some specialized tissue. N-nitro-L-arginine, used to block NO-synthase and NO production, induced no changes in ACh-induced relaxation. Methylene blue, a soluble guanylate cyclase inhibitor, induced no changes in ACh-induced relaxation. These results allow us to dicard a probable role of EDRF/nitric oxide in the ACh-induced relaxation of lizard small intestine, providing evidence that this mechanism could be different from reported on other species.


Subject(s)
Animals , Male , Female , Cholinergic Agonists/pharmacology , Esophagus/drug effects , Intestine, Small/drug effects , Muscle Relaxation/drug effects , Muscle Tonus/drug effects , Enzyme Inhibitors/pharmacology , Hexamethonium/pharmacology , Lizards , Methylene Blue/pharmacology , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Nitric Oxide Synthase , Nitroarginine/pharmacology , Tetrodotoxin/pharmacology
10.
Indian J Biochem Biophys ; 1998 Apr; 35(2): 123-30
Article in English | IMSEAR | ID: sea-27264

ABSTRACT

Verapamil, a Ca2+ channel blocker, is also reported to block Na+ channels in mammalian heart and to modulate the repolarisation phase of cardiac action potential (AP). The Na+ channel blocking activity of verapamil and its implication to changes in repolarisation were studied on chicken ventricular strips where upstroke is due to highly TTX sensitive Na+ channels. At low doses verapamil (0.5-5 micro M) and TTX (0.1-0.5 nM) did not cause any significant effect on resting membrane potential (Em), maximal upstroke velocity (+Vmax) or AP duration (ADP). Higher concentrations of both verapamil (10-320 micro M) and TTX (1-40 nM) caused dose-dependent decrease in +Vmax and overshoot (Eov) without any change in Em. EC50 for the inhibitory effect of verapamil and TTX on +Vmax was 140 microM and 14 nM respectively. Na+ channels in adult chicken ventricular myocardium, therefore, seem to be more sensitive to TTX than their mammalian counterpart. Higher dosage of verapamil are needed to block Na+ channels in adult avian heart as reported for mammalian myocardium. Both verapamil and TTX caused dose-dependent changes in APD at-20 mV (ADP20) and at 90% repolarisation (APD90). TTX (1-40 nM) produced a decrease of 5-13% in APD20 and 4-12% in APD90 indicating a uniform hastening of the repolarisation process. Verapamil (10-320 micro M), however, induced 6-38% decrease in APD20 but 5-12% increase in APD90. Regression analysis of the relationship between changes in +Vmax and APD20 and APD90 in presence of TTX and verapamil exhibit significant linear correlation r for APD20 and APD90, being +0.965 for TTX and +0.978 and-0.898 for verapamil respectively. A linear correlation between inhibition of +Vmax and reduction in APD for TTX indicates the possibility that Na+ channel linked mechanism(s) underlie repolarisation process. Verapamil induced decrease in APD20 and increase in APD90 could be explained by the block of Na+/Ca2+ and K+ channels respectively.


Subject(s)
Action Potentials/drug effects , Animals , Calcium Channel Blockers/pharmacology , Chickens , Female , Heart/drug effects , Heart Ventricles , Kinetics , Male , Sodium Channel Blockers , Tetrodotoxin/pharmacology , Verapamil/pharmacology
11.
Braz. j. med. biol. res ; 30(6): 793-9, jun. 1997. ilus, graf
Article in English | LILACS | ID: lil-194182

ABSTRACT

The presence of inhibitory nonadrenergic noncholinergic (NANC) intrinsic innervation of the circular muscle of the gastrointestinal sphincters of the South American (SA) opossum was investigated in vitro. Isolated circular muscle strips from the esophagogastric and ileocolonic junctions but not from the gastroduodenal (pylorus) region developed spontaneous tension. Tetrodotoxin (TTX, 1 muM) augmented the spontaneous tension only in the ileocolonic junction strips. Electrical field stimulation of esophagogastric and ileocolonic junction strips caused frequency-dependent responses consisting of a relaxation at lower frequencies (<1 Hz) and a biphasic response or contraction at higher frequencies. In the strips from the pyloric region electrical field stimulation abolished the spontaneous activity at lower frequencies and induced contractions at higher frequencies. The responses elicited by electrical field stimulation in the three sphincters were abolished by TTX (1 muM). Electrical field-induced contractions were reduced while relaxations were enhanced by atropine (1 muM). In the presence of atropine (1 muM) and guanethidine (3 muM), electrical field stimulation, nicotine and ATP induced frequency-or concentration-dependent relaxations of the three sphincters that were abolished by TTX (1 muM). Isoproterenol and sodium nitroprusside caused concentration-dependent relaxations which were TTX-resistant. These findings indicate that the sphincteric circular muscle of the SA opossum gastrointestinal tract is relaxed by the activation of intrinsic NANC nerves and therefore can be used as a model for the study of the mechanisms involved in these responses.


Subject(s)
Animals , Female , Atropine/pharmacology , Electric Stimulation , Esophagogastric Junction/drug effects , Guanethidine/pharmacology , In Vitro Techniques , Isoproterenol/pharmacology , Muscle Relaxation/drug effects , Opossums/physiology , Pylorus/drug effects , Tetrodotoxin/pharmacology , South America
12.
Acta gastroenterol. latinoam ; 27(1): 19-25, mar. 1997. tab, graf, ilus
Article in English | LILACS | ID: lil-196659

ABSTRACT

Background/Aim: Short-circuit current (Isc) and transepithelial potential difference (PD) of rat distal colon decrease during acute hypoxia and overshoot on reoxygenation. It is not known whether tonic intrinsic nervous activity may influence these responses. Methods: Preparations lacking the submucosal plexus (isolet mucosa) and preparations retaining it (mucosa-submucosa) were mounted in Ussing chambers at 37 degrees Celsius and gassed with 95 percent O2 -5 percent CO2; Isc and PD were monitored. A 5-min hypoxia with 95 percent N2-5 percent CO2 was followed by reoxygenation. The procedure was repeated in the presence of the nervous blocking agent, tetrodotoxin (10(-6)M) in the serosal side of the chamber. Results: In the isolated mucosa (n=10) hypoxia reduced Isc by -55 + 5 percent and PD by -54 + 6 percent below baseline; reoxygenatory overschoots were, respectively, + 60 + 17 percent and + 16 percent. Tetrodotoxin slightly and transiently reduced baseline Isc (-16 + 2 percent) and PD (-14 + 3 percent), with a small resistivity increase. It did not significatively modify the responses to responses to either hypoxia or reoxygenation. In mucosa-submucosa preparations (n=9) hypoxia reduced Isc (-54 + 8 percent) and PD (-61 + 4 percent). On reoxygenation Isc and PD were increased, respectively, +30 + 5 percent and +19 + 6 percent over baseline. Tetrodotoxin reduced baseline Isc (-59,6 + 5 percent) and PD (61,3 + 6 percent). It enhanced hypoxic Isc and PD decreases (-80 + 5 percent), but not the reoxygenatory overschoots. Conclusions: 1) Tetrodotoxin affects baseline Isc and PD more intensely in submucosal plexus innervated preparations than in the isolated mucosa. 2) The epithelial electrical response to acute hypoxia appears to be modulated by tonic neural activity.


Subject(s)
Rats , Animals , Male , Colon/innervation , Hypoxia/metabolism , Submucous Plexus/metabolism , Tetrodotoxin/pharmacology , Acute Disease , Colon/drug effects , Colon/metabolism , Electrophysiology , Epithelium/innervation , Intestinal Mucosa/drug effects , Intestinal Mucosa/innervation , Intestinal Mucosa/metabolism , Rats, Wistar
13.
J. venom. anim. toxins ; 2(1): 28-38, 1996. tab, ilus
Article in English | LILACS | ID: lil-194269

ABSTRACT

We have already shown the presence of guanidine neurotoxins in calcareous red algae and mussels collected in the Säo Sebastiäo channel State of Säo Paulo,Brazil). It is known that these neurotoxins comprise more than 25 analogues such as tetrodotoxin (TTX) and derivatives plus the paralytic shellfish toxins (PST) found in a variety of marine, freshwater and amphibious species. Filter feeding animals generally possess large amounts of these neurotoxins. The tunicates are sessil marine animals with a high rate of sea water filtration. The tunics and siphons of 50 specimens of Phallusia nigra were dissected and the visceral organs were immersed in methanol containing acetic acid 0.02 N ph 5.0. The extract was prepared by homogenization, filtration and the methanolic phase was concentrated under reduced pressure and defatted with chloroform. The polar phase was evaporated and the residue dissolved in deionized water for further purification in ionic-exchange resin column (Bio-Gel P-2) and HPLC analysis. The extract showed paralytic effects on mouse assay (26.9 MU/100mg) and on crustacean isolated nerve preparations. The chemical analysis for TTX and PST revealed toxins with retention times similar to gonyautoxins, saxitoxins and TTX. These findings are important to explain future toxin envenoming outbreaks on the Brazilian coast.


Subject(s)
Animals , Seawater/chemistry , Brachyura/drug effects , Dinoflagellida/pathogenicity , Mollusca , Neurotoxins/poisoning , Paralysis , Saxitoxin/pharmacology , Tetrodotoxin/pharmacology , Urochordata/pathogenicity , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL